Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xian-Zhong Sun, ${ }^{\text {a }}{ }^{*}$ Ming-Hua Zeng ${ }^{\text {b }}$ and Bao-Hui Ye ${ }^{c}$

${ }^{\text {a }}$ Department of Chemistry, Luoyang Teacher College, Luoyang, Henan 471022, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Guangxi Normal University, Guilin, Guangxi 541000, People's Republic of China, and ${ }^{\text {c }}$ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou,
Guangdong 510275, People's Republic of China

Correspondence e-mail:
cep01sxz@student.zsu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.055$
$w R$ factor $=0.145$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Linear chains in the $1: 1$ complex of thiophene-2,5-dicarboxylic acid and 4,4'-bipyridine

In the crystal structure of the title complex, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~S}$ or bpy.tdc (bpy is 4,4'-bipyridine and tdc is thiophene-2,5dicarboxylic acid), bpy and tdc form one-dimensional zigzag chains as a result of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. These chains are further assembled into layers by van der Waals attractions, which are extended into a three-dimensional network by van der Waals and aromatic $\pi-\pi$ stacking interactions.

Comment

Crystals of many organic compounds grow from solution and commonly contain only one kind of molecule. Hydrogenbonding interactions, van der Waals attractions and aromatic $\pi-\pi$ stacking interactions are the primary interactions involved in the creation of a variety of molecular architectures for organic crystals. We report here the crystal structure of the title $1: 1$ complex, bpy-tdc (bpy is $4,4^{\prime}$-bipyridine and tdc is thiophene-2,5-dicarboxylic acid), (I), which crystallizes in the space group $P 2_{1} / c$. In (I), bpy and tdc form one-dimensional zigzag chains as a result of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 2 and Table 1). These chains are assembled into layers by van der Waals attractions (Fig. 3), which are further extended into a three-dimensional network by van der Waals and aromatic $\pi-\pi$ stacking interactions (Fig. 4); the thiophene plane (S1/ C12-C15) makes a dihedral andle of 9.3° with the adjacent pyridine plane ($\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$) and the distance between the two planes is $3.5 \AA$. The unique strength and direction of the hydrogen-bonding interactions play a very important role in the creation of the observed molecular architecture for this crystal structure.

(I)

Experimental

4,4'-Bipyridine (0.2 mmol) and thiophene-2,5-dicarboxylic acid $(0.2 \mathrm{mmol})$ were dissolved in a water-alcohol ($4: 1 \mathrm{v} / \mathrm{v}, 20 \mathrm{ml}$) mixture. The solution was stirred for 1 h at 333 K and then filtered. The resulting solution was allowed to stand in air at room temperature for one week and yielded colorless crystals.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=328.34$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=6.8598$ (6) A
$b=10.3438$ (9) A
$c=21.1315$ (18) \AA
$\beta=95.718$ (2) ${ }^{\circ}$
$V=1492.0$ (2) \AA^{3}
$Z=4$
$D_{x}=1.462 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25

reflections

$\theta=2-27^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.52 \times 0.46 \times 0.18 \mathrm{~mm}$

Received 27 September 2004
Accepted 18 October 2004
Online 22 October 2004

Figure 1
The component molecules of (I), shown with 50% probability displacement ellipsoids.

Figure 2
Perspective view of the one-dimensional chain in (I). Hydrogen bonds are shown as dashed lines and H atoms have been omitted.

Data collection

Siemens $R 3 m$ diffractometer ω scans	$\begin{aligned} & R_{\mathrm{int}}=0.021 \\ & \theta_{\max }=27.0^{\circ} \end{aligned}$
Absorption correction: ψ scan	$h=-8 \rightarrow 7$
(North et al., 1968)	$k=-10 \rightarrow 13$
$T_{\text {min }}=0.886, T_{\text {max }}=0.958$	$l=-26 \rightarrow 26$
8861 measured reflections	2 standard reflections
3243 independent reflections	every 200 reflections
2620 reflections with $I>2 \sigma(I)$	intensity decay: none
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0724 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$	+0.482P]
$w R\left(F^{2}\right)=0.145$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.07$	$(\Delta / \sigma)_{\text {max }}<0.001$
3243 reflections	$\Delta \rho_{\text {max }}=0.46 \mathrm{e} \AA^{-3}$
208 parameters	$\Delta \rho_{\min }=-0.21 \mathrm{e} \AA^{-3}$

H -atom parameters constrained

Table 1
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1A $\cdots \mathrm{N}^{\mathrm{i}}$	0.82	1.84	$2.662(2)$	175
O4-H4B 1^{ii}	0.82	1.80	$2.616(2)$	175

[^0]

Figure 3
Perspective view of the layers consisting of chains. H atoms have been omitted. Dashed lines indicate hydrogen bonds.

Figure 4
The molecular packing, viewed along the b axis. H atoms have been omitted. Dashed lines indicate hydrogen bonds.

H atoms bonded to C atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}$ $=0.93 \AA$) and refined as riding on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. H atoms linking with O atoms were located in difference maps, adjusted to give $\mathrm{O}-\mathrm{H}=0.85 \AA$, and refined as riding on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: R3m Software (Siemens, 1990); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

References

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1990). R3m Software, Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: Symmetry codes: (i) $-1-x, 1-y, 1-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.

