Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Zhong Sun,^a* Ming-Hua Zeng^b and Bao-Hui Ye^c

^aDepartment of Chemistry, Luoyang Teacher College, Luoyang, Henan 471022, People's Republic of China, ^bDepartment of Chemistry, Guangxi Normal University, Guilin, Guangxi 541000, People's Republic of China, and ^cSchool of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China

Correspondence e-mail: cep01sxz@student.zsu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.055 wR factor = 0.145 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Linear chains in the 1:1 complex of thiophene-2,5-dicarboxylic acid and 4,4'-bipyridine

In the crystal structure of the title complex, $C_{10}H_8N_2 \cdot C_6H_4O_4S$ or bpy·tdc (bpy is 4,4'-bipyridine and tdc is thiophene-2,5dicarboxylic acid), bpy and tdc form one-dimensional zigzag chains as a result of $O-H \cdot \cdot \cdot N$ hydrogen bonds. These chains are further assembled into layers by van der Waals attractions, which are extended into a three-dimensional network by van der Waals and aromatic $\pi-\pi$ stacking interactions.

Comment

Crystals of many organic compounds grow from solution and commonly contain only one kind of molecule. Hydrogenbonding interactions, van der Waals attractions and aromatic π - π stacking interactions are the primary interactions involved in the creation of a variety of molecular architectures for organic crystals. We report here the crystal structure of the title 1:1 complex, bpy·tdc (bpy is 4,4'-bipyridine and tdc is thiophene-2,5-dicarboxylic acid), (I), which crystallizes in the space group $P2_1/c$. In (I), bpy and tdc form one-dimensional zigzag chains as a result of $O-H \cdots N$ hydrogen bonds (Fig. 2 and Table 1). These chains are assembled into layers by van der Waals attractions (Fig. 3), which are further extended into a three-dimensional network by van der Waals and aromatic π - π stacking interactions (Fig. 4); the thiophene plane (S1/ C12-C15) makes a dihedral andle of 9.3° with the adjacent pyridine plane (N1/C1-C5) and the distance between the two planes is 3.5 Å. The unique strength and direction of the hydrogen-bonding interactions play a very important role in the creation of the observed molecular architecture for this crystal structure.

Experimental

4,4'-Bipyridine (0.2 mmol) and thiophene-2,5-dicarboxylic acid (0.2 mmol) were dissolved in a water–alcohol (4:1 ν/ν , 20 ml) mixture. The solution was stirred for 1 h at 333 K and then filtered. The resulting solution was allowed to stand in air at room temperature for one week and yielded colorless crystals.

Crystal data

$C_{10}H_8N_2 \cdot C_6H_4O_4S$
$M_r = 328.34$
Monoclinic, $P2_1/c$
a = 6.8598 (6) Å
b = 10.3438 (9) Å
c = 21.1315 (18) Å
$\beta = 95.718 \ (2)^{\circ}$
V = 1492.0 (2) Å ³
Z = 4

 $D_x = 1.462 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 25 reflections $\theta = 2-27^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 293 (2) K Block, colorless $0.52 \times 0.46 \times 0.18 \text{ mm}$ Received 27 September 2004 Accepted 18 October 2004 Online 22 October 2004

organic papers

 $\ensuremath{\mathbb{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The component molecules of (I), shown with 50% probability displacement ellipsoids.

Figure 2

Perspective view of the one-dimensional chain in (I). Hydrogen bonds are shown as dashed lines and H atoms have been omitted.

 $\begin{array}{l} R_{\rm int} = 0.021 \\ \theta_{\rm max} = 27.0^\circ \\ h = -8 \rightarrow 7 \end{array}$

 $\begin{array}{l} k = -10 \rightarrow 13 \\ l = -26 \rightarrow 26 \end{array}$

2 standard reflections

every 200 reflections

intensity decay: none

Data collection

Siemens R3m diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.886, \ T_{\max} = 0.958$
8861 measured reflections
3243 independent reflections
2620 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0724P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.055$	+ 0.482P]
$wR(F^2) = 0.145$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3243 reflections	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
208 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

H١	vdrog	en-bonding	geometry	7 (A.	°)
----	-------	------------	----------	-------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1A\cdots N2^i$	0.82	1.84	2.662 (2)	175
$O4-H4B\cdots N1^{ii}$	0.82	1.80	2.616 (2)	175

Symmetry codes: (i) -1 - x, 1 - y, 1 - z; (ii) 1 - x, $y - \frac{1}{2}$, $\frac{1}{2} - z$.

Figure 3

Perspective view of the layers consisting of chains. H atoms have been omitted. Dashed lines indicate hydrogen bonds.

Figure 4

The molecular packing, viewed along the b axis. H atoms have been omitted. Dashed lines indicate hydrogen bonds.

H atoms bonded to C atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms linking with O atoms were located in difference maps, adjusted to give O–H = 0.85 Å, and refined as riding on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: R3m Software (Siemens, 1990); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

References

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1990). R3m Software, Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.